Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
Soft Matter ; 20(6): 1173-1185, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38164656

ABSTRACT

Glycyrrhizic acid (GA), a naturally derived food-grade saponin molecule, is a promising alternative to synthetic surfactants for stabilizing multiphase systems including emulsions and foams, due to its biological activity and surface-active properties. Understanding the interfacial behavior of GA, particularly in relation to its complex self-assembly behaviors in water induced by multiple environmental stimuli, is crucial to its application in multiphase systems. In this study, we comprehensively investigate the interfacial structure and rheological properties of GA systems, as a function of pH and temperature, through Langmuir-Blodgett films combined with atomic force microscopy, interfacial particle tracking, adsorption kinetics, stress-relaxation behavior and interfacial dilatational rheology. The variation of solution pH provokes pronounced changes in the interfacial properties of GA. At pH 2 and 4, GA fibril aggregates/fibrils adsorb rapidly, followed by rearrangement into large lamellar and rod-like structures, forming a loose and heterogeneous fibrous network at the interface, which exhibit a stretchable gel-like behavior. In contrast, GA at pH 6 and 8, featuring micelles or monomers in solutions, adsorb slowly to the interface and re-assemble partially into small micelle-like or irregular structures, which lead to a dense and homogeneous interfacial layer with stiffer glassy-like responses. With successively elevated temperature, the GA structures (pH 4) at the interface break into smaller fragments and further adsorption is promoted. Upon cooling, the interfacial tension of GA further decreases and a highly elastic interfacial layer may be formed. The diverse GA assemblies in bulk solution impart them with rich and intriguing interfacial behaviors, which may provide valuable mechanistic insights for the development of novel edible soft matter stabilized by GA.


Subject(s)
Glycyrrhizic Acid , Water , Surface Tension , Surface Properties , Rheology , Emulsions , Water/chemistry , Adsorption
2.
Proc Natl Acad Sci U S A ; 120(51): e2311647120, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38085785

ABSTRACT

Injuries to the retinal pigment epithelium (RPE) and outer retina often result in the accumulation of retinal microglia within the subretinal space. These subretinal microglia play crucial roles in inflammation and resolution, but the mechanisms governing their functions are still largely unknown. Our previous research highlighted the protective functions of choroidal γδ T cells in response to RPE injury. In the current study, we employed single-cell RNA sequencing approach to characterize the profiles of immune cells in mouse choroid. We found that γδ T cells were the primary producer of interleukin-17 (IL-17) in the choroid. IL-17 signaled through its receptor on the RPE, subsequently triggering the production of interleukin-6. This cascade of cytokines initiated a metabolic reprogramming of subretinal microglia, enhancing their capacity for lipid metabolism. RPE-specific knockout of IL-17 receptor A led to the dysfunction of subretinal microglia and RPE pathology. Collectively, our findings suggest that responding to RPE injury, the choroidal γδ T cells can initiate a protective signaling cascade that ensures the proper functioning of subretinal microglia.


Subject(s)
Macular Degeneration , Retinal Degeneration , Animals , Mice , Cytokines/metabolism , Interleukin-17/genetics , Interleukin-17/metabolism , Macular Degeneration/pathology , Retina/metabolism , Retinal Degeneration/metabolism , Retinal Pigment Epithelium/metabolism
3.
Int Immunopharmacol ; 121: 110512, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37343373

ABSTRACT

The re-emergence of Zika virus (ZIKV) remains a major public health threat that has raised worldwide attention. Accumulating evidence suggests that ZIKV can cause serious pathological changes to the human nervous system, including microcephaly in newborns. Recent studies suggest that metformin, an established treatment for diabetes may play a role in viral infection; however, little is known about the interactions between ZIKV infection and metformin administration. Using fluorescent ZIKV by flow cytometry and immunofluorescence imaging, we found that ZIKV can infect microglia in a dose-dependent manner. Metformin diminished ZIKV replication without the alteration of viral entry and phagocytosis. Our study demonstrated that metformin downregulated ZIKV-induced inflammatory response in microglia in a time- and dose-dependent manner. Our RNA-Seq and qRT-PCR analysis found that type I and III interferons (IFN), such as IFNα2, IFNß1 and IFNλ3 were upregulated in ZIKV-infected cells by metformin treatment, accompanied with the downregulation of GBP4, OAS1, MX1 and ISG15. Together, our results suggest that metformin-mediated modulation in multiple pathways may attribute to restraining ZIKV infection in microglia, which may provide a potential tool to consider for use in unique clinical circumstances.


Subject(s)
Metformin , Zika Virus Infection , Zika Virus , Infant, Newborn , Humans , Microglia , Down-Regulation , Virus Replication
4.
Food Chem ; 413: 135636, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-36753788

ABSTRACT

Polyphenols are frequently utilized antioxidants in active packaging and anti-immflamotary bioactives in tissue engineering. Herein, we introduced a novel method for the rapid (<5 s) fabrication of interfacial self-assembled zein films (ZF) at the air-water interface. Polyphenols with different partition coeffient (Log P), namely, curcumin, resveratrol, and quercetin, were simultaneously loaded during the laterally occurred self-assembly process of zein molecules, respectively. Efficient loading and smart regulation over the physical distribution, intramolecule interaction and release profile in ZF were achieved. The main zein-polyphenol interactions exhibited hydrogen bonding and hydrophobic interactions that modulated the surface micromorphology of ZF and the release kinetics of different polyphenols. The log P of polyphenols affected the strength of the interaction of zein molecules, which in turn influenced the sustained release properties of polyphenols. This "bottom-up" strategy offers a novel way to rapidly incorporate and delicate control over the release of polyphenols.


Subject(s)
Nanoparticles , Zein , Delayed-Action Preparations , Zein/chemistry , Phenols/chemistry , Polyphenols/chemistry , Water
5.
Proc Natl Acad Sci U S A ; 119(48): e2208934119, 2022 11 29.
Article in English | MEDLINE | ID: mdl-36409895

ABSTRACT

In ischemic retinopathy, overactivated retinal myeloid cells are a crucial driving force of pathological angiogenesis and inflammation. The cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) signaling are key regulators of inflammation. This study aims to investigate the association of cGAS-STING signaling with ischemic retinopathy and the regulation of its activation. We found that protein levels of cGAS and STING were markedly up-regulated in retinal myeloid cells isolated from mice with oxygen-induced retinopathy (OIR). Knockout of Sting and pharmacological inhibition of STING both alleviated retinal neovascularization (NV) and reduced retinal vascular leakage in OIR. Further, Sting knockout and STING inhibitor also alleviated leukocyte adhesion to retinal vasculature and infiltration into the retina as well as microglial activation in OIR. These results suggest that cGAS-STING signaling played a pathogenic role in retinal myeloid cell activation and NV in ischemic retinopathy. To identify the regulation of cGAS-STING signaling in OIR, we evaluated the role of transcription factor peroxisome proliferator-activated receptor α (PPARα). The results demonstrated that PPARα was down-regulated in OIR retinas, primarily in myeloid cells. Furthermore, Pparα knockout significantly up-regulated cGAS and STING levels in retinal CD11b+ cells, while PPARα agonist inhibited cGAS-STING signaling and cytosolic mitochondrial DNA (mtDNA) release, a causative feature for cGAS activation. Knockout of Sting ameliorated retinal NV, hyperpermeability, and leukostasis in Pparα-/- mice with OIR. These observations suggest that PPARα regulates cGAS-STING signaling, likely through mtDNA release, and thus, is a potential therapeutic target for ischemic retinopathy.


Subject(s)
PPAR alpha , Retinal Diseases , Animals , Mice , Disease Models, Animal , DNA, Mitochondrial , Inflammation , Ischemia/complications , Membrane Proteins/metabolism , Mice, Knockout , Neovascularization, Pathologic , Nucleotidyltransferases/metabolism , PPAR alpha/genetics , Retinal Diseases/genetics
6.
ACS Appl Mater Interfaces ; 14(42): 47345-47358, 2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36190017

ABSTRACT

Artificial recapitulation of hierarchically porous films gained great interest due to their versatile functionalities and applications. However, the development of novel eco-friendly and nontoxic biopolymer-based porous films is still limited by the time-consuming fabrication processes and toxic organic reagents involved. Here, we reported a novel approach to rapidly (within 5 s) fabricate biopolymer-based hierarchically porous films via inducing the laterally occurring interfacial self-assembly of prolamins at the air-liquid interface during an antisolvent dripping procedure. The as-prepared films exhibited a hierarchically porous microstructure (with sizes of about 500 nm to 5 µm) with location-graded and Janus features. The formation mechanism involved the solvent gradient controlled self-assembly of prolamin into an anisotropic defect structure in longitudinal and lateral directions. Accordingly, the macroscopic morphologies together with the porosity and pore size could be precisely tuned by solvents and operating parameters in a convenient way. Furthermore, alcohol-soluble but water-insoluble bioactive compounds could be incorporated simultaneously via a one-step loading procedure, which endowed films with large loading efficiency and sustained release features suitable for controlled release applications. The effect of the curcumin-loaded porous film on skin wound healing, as one of the potential applications of this novel material, was then investigated in vivo in a full-thickness wound model, wherein satisfying wound healing effects were achieved through multitarget and multipathway mechanisms. This pioneering work offers a novel strategy for the rapid architecture of biopolymer-based hierarchically porous film with versatile application potentials.


Subject(s)
Curcumin , Porosity , Delayed-Action Preparations , Prolamins , Water/chemistry , Solvents
7.
Front Nutr ; 9: 1000116, 2022.
Article in English | MEDLINE | ID: mdl-36071940

ABSTRACT

Food packaging is a coordinated system comprising food processing, protection from contamination and adulteration, transportation and storage, and distribution and consumption at optimal cost with a minimum environmental impact to the packed food commodity. Active packaging involves deliberate addition of the functional ingredients either in the film or the package headspace to preserve the food quality, improve safety and nutrition aspects, and enhance the shelf-life. In this review, recent advances in the fabrication of biopolymer-based films, their classification (biodegradable-, active-, and intelligent packaging films), advanced fabrication strategies (composite-, multilayer-, and emulsified films), and special functions induced by the biopolymers to the film matrix (mechanical-, water resistance and gas barrier-, and optical properties, and bioactive compounds reservoir) were briefly discussed. A summary of conclusions and future perspectives of biopolymer-based packaging films as advanced biomaterial in preserving the food quality, improving safety and nutrition aspects, and enhancing shelf-life of the products was proposed.

8.
Proc Natl Acad Sci U S A ; 119(33): e2207489119, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35939707

ABSTRACT

The mechanistic target of rapamycin (mTOR) is assembled into signaling complexes of mTORC1 or mTORC2, and plays key roles in cell metabolism, stress response, and nutrient and growth factor sensing. Accumulating evidence from human and animal model studies has demonstrated a pathogenic role of hyperactive mTORC1 in age-related macular degeneration (AMD). The retinal pigment epithelium (RPE) is a primary injury site in AMD. In mouse models of RPE-specific deletion of Tuberous sclerosis 1 (Tsc1), which encodes an upstream suppressor of mTORC1, the hyperactivated mTORC1 metabolically reprogrammed the RPE and led to the degeneration of the outer retina and choroid (CH). In the current study, we use single-cell RNA sequencing (scRNA-seq) to identify an RPE mTORC1 downstream protein, dopamine- and cyclic AMP-regulated phosphoprotein of molecular weight 32,000 (DARPP-32). DARPP-32 was not found in healthy RPE but localized to drusen and basal linear deposits in human AMD eyes. In animal models, overexpressing DARPP-32 by adeno-associated virus (AAV) led to abnormal RPE structure and function. The data indicate that DARPP-32 is a previously unidentified signaling protein subjected to mTORC1 regulation and may contribute to RPE degeneration in AMD.


Subject(s)
Dopamine and cAMP-Regulated Phosphoprotein 32 , Macular Degeneration , Mechanistic Target of Rapamycin Complex 1 , Retinal Pigment Epithelium , Animals , Disease Models, Animal , Dopamine and cAMP-Regulated Phosphoprotein 32/metabolism , Enzyme Activation , Humans , Macular Degeneration/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Retina/metabolism , Retinal Pigment Epithelium/metabolism , Signal Transduction
9.
Crit Rev Food Sci Nutr ; : 1-28, 2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36004584

ABSTRACT

Prolamins are a group of storage proteins (zeins, kafirins, hordeins, secalins, gliadins, glutenins, and avenins) found in the endosperm of cereal grains and characterized by high glutamine and proline content. With the high proportion of nonpolar amino acids (40-80%) and peculiar solubility (alcohol (60-90%), acetic acid, and alkaline solutions), prolamins exhibit tunable self-assembly behaviors. In recent years, research practices of utilizing prolamins as green building materials of functional delivery vehicles to improve the health benefits of bioactive compounds have surged due to their attractive advantages (e.g. sustainability, biocompatibility, fabrication potential, and cost-competitiveness). This article covers the recent advances in self-assembly behaviors leading to the fabrication of nanoparticles, fibers, and films in the bulk water phase, at the air-liquid interface, and under the electrostatic field. Different fabrication methods, including antisolvent precipitation, evaporation induced self-assembly, thermal treatment, pH-modulation, electrospinning, and solvent casting for assembling nanoarchitectures as functional delivery vehicles are highlighted. Emerging industrial applications by mapping patents, including encapsulation and delivery of bioactive compounds and probiotics, active packaging, Pickering emulsions, and as functional additives to develop safer, healthier, and sustainable food products are discussed. A future perspective concerning the fabrication of prolamins as advanced materials to promote their commercial food applications is proposed.

10.
Food Res Int ; 152: 110843, 2022 02.
Article in English | MEDLINE | ID: mdl-35181064

ABSTRACT

The potential impacts of active packaging on the volatile composition of fruits during preservations largely associated with consumers' acceptance, yet was barely investigated. In this work, a biopolymer-coated polyethylene active film was developed and its effects on qualities and volatile compositions of fruits with different respiration rates were comprehensively investigated. Underlying reasons for the effect of active packaging on volatile composition change of fruits were elucidated through revealing ternary relationship among the packaging-shaped bacterial community, modified atmosphere and volatiles. Off-flavor production was reduced and more sesquiterpenes (α-cubebene, copaene, ß-caryophyllene, α-caryophyllene, d-amorphene) were reserved for longan packaged with active film, due to its antimicrobial and moisture absorption ability, as leading contributors to the selective inhibition on spoilage bacteria genera including Zymobacter, Gluconobacter and Pantoea. Whereas volatile profile of strawberry with high respiration rate was more actively affected by the modified atmosphere induced by packaging, instead of the bacterial community, where hypoxia (<2% O2) led to the accumulation of ethyl esters (0.154-0.184 µg/g) that conferred off-flavor but decreased production of methyl (0.172-0.367 µg/g) and hexyl esters (1.26-1.89 × 10-2 µg/g) that represented typical fruity aroma. This work adds new knowledges on impacts of active packaging on the volatile profile of fruits and would provide guidance to smart design of active packaging for preservation of aromatic fruits.


Subject(s)
Fruit , Polyethylene , Atmosphere , Bacteria , Biopolymers , Food Packaging
11.
J Immunol ; 208(4): 861-869, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35046104

ABSTRACT

The IL-36 family, including IL-36α, IL-36ß, IL-36γ, and IL-36R antagonist, belong to the IL-1 superfamily. It was reported that IL-36 plays a role in immune diseases. However, it remains unclear how IL-36 regulates inflammation. To determine the role of IL-36/IL-36R signaling pathways, we established an acute hepatitis mouse model (C57BL/6) by i.v. injection of the plant lectin Con A. We found that the levels of IL-36 were increased in the liver after Con A injection. Our results demonstrated the infiltrated neutrophils, but not the hepatocytes, were the main source of IL-36 in the liver. Using the IL-36R-/- mouse model (H-2b), we surprisingly found that the absence of IL-36 signals led to aggravated liver injury, as evidenced by increased mortality, elevated serum alanine aminotransferase and aspartate aminotransferase levels, and severe liver pathological changes. Further investigations demonstrated that a lack of IL-36 signaling induced intrahepatic activation of CD4+ and CD8+ T lymphocytes and increased the production of inflammatory cytokines. In addition, IL-36R-/- mice had reduced T regulatory cell numbers and chemokines in the liver. Together, our results from the mouse model suggested a vital role of IL-36 in regulating T cell function and homeostasis during liver inflammation.


Subject(s)
Concanavalin A/adverse effects , Hepatitis/etiology , Hepatitis/metabolism , Interleukin-1/metabolism , Receptors, Interleukin-1/metabolism , Signal Transduction , Animals , Biomarkers , Cytokines/metabolism , Disease Models, Animal , Disease Susceptibility , Hepatitis/diagnosis , Immunophenotyping , Liver/immunology , Liver/metabolism , Liver/pathology , Mice , Mice, Knockout , Neutrophil Infiltration/genetics , Neutrophil Infiltration/immunology , Receptors, Interleukin-1/genetics , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
12.
Immunology ; 165(1): 61-73, 2022 01.
Article in English | MEDLINE | ID: mdl-34411293

ABSTRACT

Interleukin (IL)-33, a member in the IL-1 family, plays a central role in innate and adaptive immunity; however, how IL-33 mediates cytotoxic T-cell regulation and the downstream signals remain elusive. In this study, we found increased mouse IL-33 expression in CD8+ T cells following cell activation via anti-CD3/CD28 stimulation in vitro or lymphocytic choriomeningitis virus (LCMV) infection in vivo. Our cell adoptive transfer experiment demonstrated that extracellular, but not nuclear, IL-33 contributed to the activation and proliferation of CD8+ , but not CD4+ T effector cells in LCMV infection. Importantly, IL-33 induced mTORC1 activation in CD8+ T cells as evidenced by increased phosphorylated S6 ribosomal protein (p-S6) levels both in vitro and in vivo. Meanwhile, this IL-33-induced CD8+ T-cell activation was suppressed by mTORC1 inhibitors. Furthermore, IL-33 elevated glucose uptake and lactate production in CD8+ T cells in both dose- and time-dependent manners. The results of glycolytic rate assay demonstrated the increased glycolytic capacity of IL-33-treated CD8+ T cells compared with that of control cells. Our mechanistic study further revealed the capacity of IL-33 in promoting the expression of glucose transporter 1 (Glut1) and glycolytic enzymes via mTORC1, leading to accelerated aerobic glucose metabolism Warburg effect and increased effector T-cell activation. Together, our data provide new insights into IL-33-mediated regulation of CD8+ T cells, which might be beneficial for therapeutic strategies of inflammatory and infectious diseases in the future.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Glucose/metabolism , Interleukin-33/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Animals , Disease Models, Animal , Disease Susceptibility , Energy Metabolism , Glycolysis , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Interleukin-33/genetics , Lactic Acid/biosynthesis , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Mice , Mice, Knockout , Signal Transduction
13.
Front Immunol ; 12: 638575, 2021.
Article in English | MEDLINE | ID: mdl-33968030

ABSTRACT

Metformin is not only the first-line medication for the treatment of type 2 diabetes, but it is also effective as an anti-inflammatory, anti-oxidative and anti-tumor agent. However, the effect of metformin during viral hepatitis remains elusive. Using an adenovirus (Ad)-induced viral hepatitis mouse model, we found that metformin treatment significantly attenuated liver injury, with reduced serum aspartate transaminase (AST) and alanine transaminase (ALT) levels and liver histological changes, presumably via decreased effector T cell responses. We then demonstrated that metformin reduced mTORC1 activity in T cells from infected mice, as evidenced by decreased phosphorylation of ribosome protein S6 (p-S6). The inhibitory effects on the mTORC1 signaling by metformin was dependent on the tuberous sclerosis complex 1 (TSC1). Mechanistically, metformin treatment modulated the phosphorylation of dynamin-related protein 1 (Drp-1) and mitochondrial fission 1 protein (FIS1), resulting in increased mass in effector T cells. Moreover, metformin treatment promoted mitochondrial superoxide production, which can inhibit excessive T cell activation in viral hepatitis. Together, our results revealed a protective role and therapeutic potential of metformin against liver injury in acute viral hepatitis via modulating effector T cell activation via regulating the mTORC1 pathway and mitochondrial functions.


Subject(s)
Adenoviridae Infections/drug therapy , Adenoviridae/physiology , Hepatitis, Viral, Animal/drug therapy , Hypoglycemic Agents/therapeutic use , Liver/pathology , Metformin/therapeutic use , Mitochondria/metabolism , Adenoviridae Infections/immunology , Animals , Cells, Cultured , Disease Models, Animal , Energy Metabolism , Female , Hepatitis, Viral, Animal/immunology , Humans , Liver/drug effects , Lymphocyte Activation , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Mice, Inbred C57BL , Tuberous Sclerosis Complex 1 Protein/metabolism
14.
Toxicology ; 451: 152685, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33486070

ABSTRACT

Hydrogen sulfide (H2S) as the third gasotransmitter molecule serves various biological regulatory roles in health and disease. Acrylonitrile (AN) is a common occupational toxicant and environmental pollutant, causing brain and liver damage in mammals. The biotransformation of AN is dependent-upon reduced glutathione (GSH), cysteine and other sulfur-containing compounds. However, the effects of AN on the endogenous H2S biosynthesis pathway have yet to be determined. Herein, we demonstrated that a single exposure to AN (at 25, 50, or 75 mg/kg for 1, 6 or 24 h) decreased the endogenous H2S content and H2S-producing capacity in a dose-dependent manner, both in the cerebral cortex and liver of rats in vivo. In addition, the inhibitory effects of AN (1, 2.5, 5, 10 mM for 12 h) on the H2S content and/or the expression of H2S-producing enzymes were also found both in primary rat astrocytes and rat liver cell line (BRL cells). Impairment in the H2S biosynthesis pathway was also assessed in primary rat astrocytes treated with AN. It was found that inhibition of the cystathionine-ß-synthase (CBS)/3-mercaptopyruvate sulfurtransferase (3-MPST)-H2S pathway with the CBS inhibitor or 3-MPST-targeted siRNA significantly increased the AN-induced (5 mM for 12 h) cytotoxicity in astrocytes. In turn, CBS activation or 3-MPST overexpression as well as exogenous NaHS supplementation significantly attenuated AN-induced cytotoxicity. Taken together, endogenous H2S biosynthesis pathway was disrupted in rats acutely exposed to AN, which contributes to acute AN neurotoxicity in primary rat astrocytes.


Subject(s)
Acrylonitrile/toxicity , Astrocytes/metabolism , Brain/metabolism , Cystathionine beta-Synthase/metabolism , Hydrogen Sulfide/metabolism , Liver/metabolism , Sulfurtransferases/metabolism , Animals , Astrocytes/drug effects , Brain/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Hydrogen Sulfide/antagonists & inhibitors , Liver/drug effects , Male , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects , Signal Transduction/physiology
15.
Am J Pathol ; 191(2): 294-308, 2021 02.
Article in English | MEDLINE | ID: mdl-33159886

ABSTRACT

Inflammation and oxidative stress accompany aging. This study investigated the interplay between oxidative stress and inflammation in the lacrimal gland. C57BL/6 mice were used at 2 to 3, 12, and 24 months of age. Nuclear factor erythroid derived-2-related factor 2 (Nrf2)-/- and corresponding wild-type mice were used at 2 to 3 and 12 to 13 months of age. A separate group of 15.5 to 17 months of age C57BL/6 mice received a diet containing an Nrf2 inducer (Oltipraz) for 8 weeks. Aged C57BL/6 lacrimal glands showed significantly greater lymphocytic infiltration, higher levels of MHC II, IFN-γ, IL-1ß, TNF-α, and cathepsin S (Ctss) mRNA transcripts, and greater nitrotyrosine and 4-hydroxynonenal protein. Young Nrf2-/- mice showed an increase in IL-1ß, IFN-γ, MHC II, and Ctss mRNA transcripts compared with young wild-type mice and greater age-related changes at 12 to 13 months of age. Oltipraz diet significantly decreased nitrotyrosine and 4-hydroxynonenal and decreased the expression of IL-1ß and TNF-α mRNA transcripts, while decreasing the frequency of CD45+CD4+ cells in lacrimal glands and significantly increasing conjunctival goblet cell density compared with a standard diet. The findings provide novel insight into the development of chronic, low-grade inflammation and oxidative stress in age-related dry eye. New therapies targeting oxidative stress pathways will be valuable in treating age-related dry eye.


Subject(s)
Aging/pathology , Dry Eye Syndromes/pathology , Lacrimal Apparatus/pathology , Oxidative Stress/physiology , Aging/metabolism , Animals , Dry Eye Syndromes/immunology , Dry Eye Syndromes/metabolism , Female , Inflammation , Lacrimal Apparatus/immunology , Lacrimal Apparatus/metabolism , Mice , Mice, Inbred C57BL , NF-E2-Related Factor 2/metabolism , Oxidative Stress/drug effects , Pyrazines/pharmacology , Thiones/pharmacology , Thiophenes/pharmacology
16.
J Neuroinflammation ; 17(1): 249, 2020 Aug 25.
Article in English | MEDLINE | ID: mdl-32843067

ABSTRACT

BACKGROUND: The Zika virus (ZIKV) outbreak that occurred in multiple countries was linked to increased risk of nervous system injuries and congenital defects. However, host immunity- and immune-mediated pathogenesis in ZIKV infection are not well understood. Interleukin-22 (IL-22) is a crucial cytokine for regulating host immunity in infectious diseases. Whether IL-22 plays, a role in ZIKV infection is unknown. METHODS: The cellular source of IL-22 was identified in IFNAR-/- mice and wild-type (WT) neonatal mice during ZIKV infection. To determine the role of IL-22, we challenged 1-day-old WT and IL-22-/- mice with ZIKV and monitored clinical manifestations. Glial cell activation in the brain was assessed by confocal imaging. ZIKV-specific CD8+ T cell responses in both the spleen and brain were analyzed by flow cytometry. In addition, glial cells were cultured in vitro and infected with ZIKV in the presence of IL-22, followed by the evaluation of cell proliferation, cytokine expression, and viral loads. RESULTS: We found that γδ T cells were the main source of IL-22 during ZIKV infection in both the spleen and brain. WT mice began to exhibit weight loss, staggered steps, bilateral hind limb paralysis, and weakness at 10 days post-infection (dpi) and ultimately succumbed to infection at 16-19 dpi. IL-22 deficiency lessened weight loss, moderated the systemic inflammatory response, and greatly improved clinical signs of neurological disease and mortality. ZIKV infection also induced the activation of microglia and astrocytes in vitro. Additional analysis demonstrated that the absence of IL-22 resulted in reduced activation of microglia and astrocytes in the cortex. Although IL-22 displayed a negligible effect on glial cells in vitro, IL-22-/- mice mounted more vigorous ZIKV-specific CD8+ T cell responses, which led to a more effective control of ZIKV in the brain. CONCLUSIONS: Our data revealed a pathogenic role of IL-22 in ZIKV encephalitis.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Interleukins/metabolism , Zika Virus Infection/immunology , Zika Virus/immunology , Animals , CD8-Positive T-Lymphocytes/metabolism , Disease Models, Animal , Interleukins/genetics , Mice , Mice, Knockout , Neuroglia/metabolism , Neuroglia/virology , Zika Virus Infection/metabolism
17.
FASEB J ; 34(9): 12502-12520, 2020 09.
Article in English | MEDLINE | ID: mdl-32721041

ABSTRACT

The retinal pigment epithelium (RPE) is a particularly vulnerable tissue to age-dependent degeneration. Over the life span, the RPE develops an expanded endo-lysosomal compartment to maintain the high efficiency of phagocytosis and degradation of photoreceptor outer segments (POS) necessary for photoreceptor survival. As the assembly and activation of the mechanistic target of rapamycin complex 1 (mTORC1) occur on the lysosome surface, increased lysosome mass with aging leads to higher mTORC1 activity. The functional consequences of hyperactive mTORC1 in the RPE are unclear. In the current study, we used integrated high-resolution metabolomic and genomic approaches to examine mice with RPE-specific deletion of the tuberous sclerosis 1 (Tsc1) gene which encodes an upstream suppressor of mTORC1. Our data show that RPE cells with constitutively high mTORC1 activity were reprogramed to be hyperactive in glucose and lipid metabolism. Lipolysis was suppressed, mitochondrial carnitine shuttle was inhibited, while genes involved in fatty acid (FA) biosynthesis were upregulated. The metabolic changes occurred prior to structural changes of RPE and retinal degeneration. These findings have revealed cellular events and intrinsic mechanisms that contribute to lipid accumulation in the RPE cells during aging and age-related degeneration.


Subject(s)
Macular Degeneration , Mechanistic Target of Rapamycin Complex 1/physiology , Retinal Pigment Epithelium , Aging , Animals , Disease Models, Animal , Fatty Acids/metabolism , Glucose/metabolism , Macular Degeneration/metabolism , Macular Degeneration/pathology , Metabolome , Mice , Mice, Inbred C57BL , Mice, Knockout , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Transcriptome
18.
Int J Mol Sci ; 21(10)2020 May 17.
Article in English | MEDLINE | ID: mdl-32429541

ABSTRACT

The retinal pigment epithelium (RPE), the outermost layer of the retina, provides essential support to both the neural retina and choroid. Additionally, the RPE is highly active in modulating functions of immune cells such as microglia, which migrate to the subretinal compartment during aging and age-related degeneration. Recently, studies have highlighted the important roles of microRNA (miRNA) in the coordination of general tissue maintenance as well as in chronic inflammatory conditions. In this study, we analyzed the miRNA profiles in extracellular vesicles (EVs) released by the RPE, and identified and validated miRNA species whose expression levels showed age-dependent changes in the EVs. Using co-culture of RPE and retinal microglia, we further demonstrated that miR-21 was transferred between the two types of cells, and the increased miR-21 in microglia influenced the expression of genes downstream of the p53 pathway. These findings suggest that exosome-mediated miRNA transfer is a signaling mechanism that contributes to the regulation of microglia function in the aging retina.


Subject(s)
Aging/metabolism , Exosomes/metabolism , Extracellular Vesicles/metabolism , MicroRNAs/metabolism , Microglia/metabolism , Retinal Pigment Epithelium/metabolism , Aging/genetics , Animals , Cells, Cultured , Choroid/growth & development , Choroid/metabolism , Choroid/physiology , Exosomes/genetics , Extracellular Vesicles/genetics , Humans , In Situ Hybridization, Fluorescence , Inflammation/metabolism , Mice , MicroRNAs/genetics , Retinal Pigment Epithelium/physiology , Signal Transduction/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
19.
Toxicol Lett ; 331: 82-91, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32461003

ABSTRACT

Hypoxia-inducible factor 1 (HIF-1) is a critical nuclear transcription factor for adaptation to hypoxia; its regulatable subunit, HIF-1α, is a cytoprotective regulatory factor. We examined the effects of methylmercury (MeHg) in rat adrenal pheochromocytoma (PC12) cells and the rat hepatocyte cell line BRL. MeHg treatment led to time- and concentration-dependent toxicity in both lines with statistically significant cytotoxic effects at 5 µM and 10 µM in PC12 and BRL, respectively, at 0.5 h. HIF-1α protein levels were significantly decreased at 2.5 (PC12) and 5 (BRL) µM MeHg. Furthermore, MeHg reduced the protein levels of HIF-1α and its target genes (glucose transporter-1, vascular endothelial growth factor-A and erythropoietin). Overexpression of HIF-1α significantly attenuated MeHg-induced toxicity in both cell types. Notably, cobalt chloride, a pharmacological inducer of HIF-1α, significantly attenuated MeHg-induced toxicity in BRL but not PC12. In both cell lines, an inhibitor of prolyl hydroxylase, 3, 4-dihydroxybenzoic acid, and the proteasome inhibitor carbobenzoxy-L-leucyl-L-leucyl-L-leucinal(MG132), antagonized MeHg toxicity, while 2-methoxyestradiol, a HIF-1α inhibitor, significantly increased it. These data establish that: (a) neuron-like PC12 cells are more sensitive to MeHg than non-neuronal BRL cells; (b) HIF-1α plays a similar role in MeHg-induced toxicity in both cell lines; and (c) upregulation of HIF-1α offers general cytoprotection against MeHg toxicity in PC12 and BRL cell lines.


Subject(s)
Cell Hypoxia/drug effects , Gene Expression Regulation/drug effects , Hepatocytes/drug effects , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Methylmercury Compounds/toxicity , Neurons/drug effects , Animals , Cell Culture Techniques , Cell Line , Cell Survival/drug effects , Dose-Response Relationship, Drug , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , PC12 Cells , RNA, Messenger/metabolism , Rats , Signal Transduction , Up-Regulation
20.
PLoS Negl Trop Dis ; 14(3): e0007675, 2020 03.
Article in English | MEDLINE | ID: mdl-32119672

ABSTRACT

Orientia tsutsugamushi infection can cause acute lung injury and high mortality in humans; however, the underlying mechanisms are unclear. Here, we tested a hypothesis that dysregulated pulmonary inflammation and Tie2-mediated endothelial malfunction contribute to lung damage. Using a murine model of lethal O. tsutsugamushi infection, we demonstrated pathological characteristics of vascular activation and tissue damage: 1) a significant increase of ICAM-1 and angiopoietin-2 (Ang2) proteins in inflamed tissues and lung-derived endothelial cells (EC), 2) a progressive loss of endothelial quiescent and junction proteins (Ang1, VE-cadherin/CD144, occuludin), and 3) a profound impairment of Tie2 receptor at the transcriptional and functional levels. In vitro infection of primary human EC cultures and serum Ang2 proteins in scrub typhus patients support our animal studies, implying endothelial dysfunction in severe scrub typhus. Flow cytometric analyses of lung-recovered cells further revealed that pulmonary macrophages (MΦ) were polarized toward an M1-like phenotype (CD80+CD64+CD11b+Ly6G-) during the onset of disease and prior to host death, which correlated with the significant loss of CD31+CD45- ECs and M2-like (CD206+CD64+CD11b+Ly6G-) cells. In vitro studies indicated extensive bacterial replication in M2-type, but not M1-type, MΦs, implying the protective and pathogenic roles of M1-skewed responses. This is the first detailed investigation of lung cellular immune responses during acute O. tsutsugamushi infection. It uncovers specific biomarkers for vascular dysfunction and M1-skewed inflammatory responses, highlighting future therapeutic research for the control of this neglected tropical disease.


Subject(s)
Angiopoietin-2/metabolism , Endothelial Cells/pathology , Orientia tsutsugamushi/growth & development , Pneumonia/pathology , Receptor, TIE-2/metabolism , Scrub Typhus/pathology , Animals , Cells, Cultured , Disease Models, Animal , Female , Humans , Macrophages/immunology , Macrophages/microbiology , Mice, Inbred C57BL , Pneumonia/immunology , Scrub Typhus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...